+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Вывод формулы аннуитета

Аннуитет

Вывод формулы аннуитета
Аннуитет – это общепринятый термин, который означает структуру погашения финансового механизма (ежемесячная оплата кредита, процентов и т.д.).

Аннуитетные выплаты структурируются одинаковыми суммами через одинаковое количество времени.

График погашения, предоставленный данным способом, имеет определенные отличия от обычного графика погашения, где вся сумма должника направлена на конец срока финансового механизма.

При обычном графике построения выплат сначала происходит оплата процентов, а только потом списывается основная сумма долга.

Иными словами, аннуитет представляет собой определенную систему выплаты задолженности, где сумма долга и процентов выплачиваются равномерно в течение всего срока кредитования. Еще аннуитет называют финансовой рентой, что по своей составляющей одно и то же.

Например, если заработная плата работнику начисляется каждый месяц в равном количестве, то данный доход является аннуитетным. При оформлении рассрочки в магазине на какой-либо товар, ежемесячный платеж в банк тоже будет иметь статус аннуитета.

Виды аннуитета

Сумма аннуитетного платежа всегда складывается из основного долга и процентных соотношений. В своем понятии данный термин имеет широкий охват: аннуитетом могут считаться:

  • срочный государственный заем в виде кредита, где ежегодно происходит оплата процентов и частично оплачивается сумма долга;
  • обыкновенный кредит для физических и юридических лиц;
  • страховой договор, который позволяет физическому лицу, заключившему его, рассчитывать на определенные выплаты по истечению заявленного срока времени (к примеру, выход на пенсию);
  • серия страховых выплат (например, при несчастном случае).

Аннуитет всегда устанавливается банковскими организациями индивидуально для каждого клиента. Он бывает двух видов:

  • аннуитет постнумерандо, где платеж должен осуществляться во второй половине отчетного периода;
  • аннуитет преднумерандо, где платеж должен осуществляться в первой половине отчетного периода.

Также аннуитет делится на:

  1. Пенсионный. На сегодняшний день данный вид аннуитета является достаточно актуальным. Многие люди знают, что с наступлением пенсионного возраста найти новую работу будет крайне проблематично, а жить на одну пенсию — мало кому удается. Поэтому, чтобы избежать плачевной ситуации в будущем работники, будучи в молодом возрасте, заключают пенсионные договора, вкладывая туда часть с нынешней зарплаты. Выплата будет происходить из пенсионного фонда Российской Федерации.
  2. Страховые. Данные выплаты регулируются и начисляются страховыми организациями при наступлении страховых случаев (болезнь, несчастный случай и т.д.).
  3. Финансовые. Это различные банковские платежи и платежи из иных организаций, занимающихся финансами.
  4. Аннуитеты, оплачиваемые юридическими лицами. Если рассматривать аннуитеты по времени их зачисления на банковский счет, то они бывают срочными и бессрочными.

При срочном аннуитете средства зачисляются в определенный период, который имеет ограниченное количество времени. Поступление денег характеризуется равными частями и через одинаковый промежуток времени.

Расчет данного вида аннуитета происходит по системе наращения или по системе дисконтирования. Дисконтирование – это выявление стоимости выплат при помощи изучения денежных поступлений к определенной временной точке. Проще говоря, это анализ соотношения будущих доходов к их сегодняшней стоимости.

Примерами срочных аннуитетов могут быть разного рода платежи за аренду жилья, земли и др.

Бессрочным аннуитетом принято считать равные выплаты через равный промежуток времени в течение долгого срока. Консоль является отличным примером для понимания специфики бессрочного аннуитета. Данные облигации, поддерживаемые государством, имеют срок действия более 30 лет.

Аннуитетные выплаты имеют различие по количеству выплат. Они могут выплачиваться как один раз в год, так и несколько раз в течение года (при срочном аннуитете).

Начисление процентов может происходить один раз в год, несколько раз в год или непрерывно. Этот вопрос всегда решается в индивидуальном порядке между банковской организацией и клиентом.

В зависимости от финансовой ситуации в стране или политики банка, могут устанавливаться:

  • фиксированный аннуитет (с момента заключения договора и до самого конца банк не имеет права повышать процент выше заявленного в договоре);
  • валютный аннуитет (здесь платежи имеют прямую зависимость от одной или некоторых валют, которые имеют повышенный уровень стабильности);
  • индексируемый аннуитет (платежи напрямую имеют привязку к индексу инфляции в стране);
  • переменный аннуитет (платежи имеют прямую зависимость от величины дохода определенных механизмов на финансовом рынке).

Для того, чтобы определить сумму равных выплат по кредитованию в течение определенного времени, необходимо рассчитать коэффициент аннуитета, который способен преобразовать единовременную выплату в платежный график.

Расчет аннуитета (формулы)

Для расчета данного коэффициента используется специальная общепринятая формула:

С практической точки зрения могут возникать некоторые расхождения от математического расчета при помощи формулы: для удобства совершения платежа может быть применена система округления суммы выплат или же округление суммы проводится из-за разного числа дней в том или другом месяце. В особенности это касается последнего месяца в графике платежей. По факту, замыкающая список сумма всегда отличается в меньшую сторону на некоторое значение.

Практически всегда при аннуитете платежи производятся в конце отчетного периода – постнумерандо. В данном случае, сумма выплаты за период должна рассчитываться по другой формуле:

Для того, чтобы более детально рассмотреть структуру аннуитетных платежей, стоит решить простую задачку. Например, нужно рассчитать ежемесячную выплату по кредиту сроком на пять лет и с суммой в 30 тысяч рублей под 8% годовых. Выплаты будут осуществляться ежемесячно, то необходимо перевести годовую процентную ставку в месячную. Делается это по довольно простой формуле:

Далее нужно подставить в формулу значения i = 0.00643 и n = 60 (5 лет – это 60 месяцев). Полученный коэффициент нужно умножить на величину кредита – 30000. В итоге получаем, что сумма ежемесячного платежа равна примерно 603 рубля.

Выплата кредитного займа происходит обычно каждый месяц или каждый квартал. При таких выплатах задается годовая процентная ставка i. При условии, что выплаты назначаются постнумерандо m раз в год за n лет, то существует формула, которая отличается от предыдущей формулы повышенной точностью расчета аннуитетного коэффициента:

Указанная формула для расчета коэффициента аннуитетных платежей основывается на наращении величины долговой суммы при помощи сложной процентной формулы.

В банковских расчетах имеется еще одна формула для определения коэффициента, которая основывается на наращении величины долговой суммы при помощи простой процентной формулы. Отличительная черта простых и сложных процентов – это отсутствие промежутка в капитализации процентных соотношений.

В данном раскладе будет в первую очередь производиться погашение основного долга, а уже после его оплаты пойдет оплата процентов.

Стоит отметить, что выполнять все вышеперечисленные действия собственноручно – это очень долго и трудоемко.

Уйдет большое количество времени, чтобы разобраться в одним человеком, а если нужно рассчитать несколько сотен аннуитетов, то ситуация для простого сотрудника банка окажется совершенно невыполнимой.

Поэтому при оформлении кредита работники банковских организаций имеют в своем арсенале специальные калькуляторы и программы, где нужно только правильно вписать числовые значения, и они самостоятельно рассчитают график аннуитетных платежей для каждого клиента.

Сами клиенты могут рассчитать свой график погашения аннуитета при помощи онлайн программ, которых очень много в сети интернет. Необходимо лишь ввести величину кредита, срок и процентную ставку.

Достоинства аннуитетных платежей

Аннуитетные платежи являются одним из современных способов погашения кредитного долга перед банком.

Данный вариант оплаты долгового обязательства не всегда является выгодным для клиента, но отличается повышенным удобством – отсутствует неразбериха «когда платить и в каком количестве».

Платеж по кредиту поступает ежемесячно в одно и то же время и в одинаковом денежном эквиваленте. Это огромный плюс для клиента и для банковской организации: нет нужды идти в банк и брать расчетный лист для выявления суммы долга на последующий месяц.

Помимо этого данный способ оплаты кредита предпочтителен для тех лиц, которые имеют невысокий заработок.

Вместе с аннуитетными платежами существует оплата кредитного долга по дифференцированной системе, где выплаты ежемесячно подвергаются перерасчету, потому что происходит оплата части процентов от конечной величины долга клиента.

С каждым месяцем после оплаты кредита сумма долга уменьшается и, соответственно, процентная величина также изменяется.

Выходит, что каждый месяц необходимо вносить все меньшее количество денег, но первоначальные суммы платежа достаточно высокие и не каждое лицо имеет возможность их вносить.

Недостатки

У данного вида платежей имеется один большой минус: первоначально выплаты строятся с преобладанием процентного эквивалента, т.е. сумма долга строится на 2/3 из процентов, а 1/3 – это сумма долга.

Аннуитет является выгодным банковской организации: сначала банк обезопасит себя, забрав проценты, а потом уже «примет» кредитные деньги.

Если клиент намерен досрочно погасить свой долг, то эту операцию следует произвести до того момента, как будут выплачены проценты. Данная операция практически не будет иметь смысла при погашении «после» — сумму, отданную за проценты, никто не вернет. В таком случае досрочное погашение просто избавит от кредитного обязательства.

Подведя итог, можно сказать, что аннуитет – это хороший выход для заемщиков, которые имеют долговое обязательство и не обладают высоким уровнем дохода. Ведь всегда легче и проще платить раз в месяц одинаковую сумму в один и тот же день.

Источник: https://bankspravka.ru/bankovskiy-slovar/annuitet.html

Вывод формулы расчёта аннуитетного платежа

Вывод формулы аннуитета
Размещено: 14 апр 06
05 фев 08 Ежемесячный Аннуитетный Платеж (ЕАП) – один из видов платежей в ипотеке. АП – равный неизменяемый платеж на весь срок кредитования. АП подразделяются на Относительные (ОАП) и Абсолютные (ААП).

ОАП выражаются в процентах или долях от суммы кредита

ААП в денежных единицах (рубли, доллары,…).
ААП равен произведению ОАП на Сумму Кредита (СК)

ААП = ОАП*СК

Вывод формулы ОАП/ААП

ЗАДАЧА: Требуется вывести формулу расчета ОАП/ААП с полным погашением кредита за n – Аннуитетных Платежей

Исходные данные, обозначения и сокращения:CК = 1 – сумма кредита

n – количество АП – равных платежей, Процентных Периодов (ПП)

p – Процентная Ставка (ПС) (в долях) за 1 ПП (если p = 1%, то доля = 0,01)k – номер платежа

Dk – долг после k-платежа

Dn = 0, т.к. заемщик после n-платежей полностью рассчитается по кредиту
а – размер ОАП

Применим вспомогательный коэффициент – q

q = 1 + p

, где
р – ПС (в долях) за ПП

С каждым последующим АП остаток долга, на который начисляется процент уменьшается до нуля после последнего АП

Dk = Dk-1 + Dk-1*p – a = Dk-1*(1 + p) – a = Dk-1*q – a

СК = 1 > D1 > D2 > … > Dk-1 > Dk >Dk+1 … > Dn-1 > Dn = 0

СК = 1

D1 = СК + СК*p – a = СК*(1+p) – a = СК*q – a = 1*q – a = q – a

СК = 1 > D1 = СК + СК*p – a = 1 + p – aт.е.1 > 1 + p – a0 > p – aa > p = (q – 1)

Т.к. очевидно, что при ОАП = a < p или a = p, заемщик никогда не рассчитается с банком

D2 = D1 + D1*p – a = D1*(1 + p) – a = D1*q – a = (q – a)*q – a = q2 – a*q – a

D3 = D2*q – a = (q2 – a*q – a)*q – a = q3 – a*q2 – a*q – a = q3 – a*(q2 + q + 1)

Dk = Dk-1*q – a = qk – a*(qk-1 + qk-2 + … + q + 1)

Dn = Dn-1*q – a = qn – a*(qn-1 + qn-2 + … + q + 1) = 0

Т.е.

qn = a*(qn-1 + qn-2 + … + q + 1)

Правая часть уравнения – сумма n-членов геометрической прогрессии
Умножим и разделим ее на (q – 1)

qn = a*(qn-1 + qn-2 + … + q + 1)*(q – 1)/(q -1)

qn = a*(qn – qn-1 + qn-1 – qn-2 + qn-2…- q + q – 1)/(q – 1)

qn = a*(qn – 1)/(q – 1)

Откуда

a = (q – 1)*qn/(qn – 1) = (q – 1)*(qn – 1 + 1)/(qn – 1) = (q – 1)*[1 + 1/(qn – 1)] = (q – 1) + (q – 1)/(qn – 1]

или

a = (q – 1)*qn/(qn – 1)

Если разделим числитель и знаменатель на qn, то

a = [(q – 1)*qn/qn]/[(qn – 1)/qn] = (q – 1)/(1 – 1/qn) = (q – 1)/(1 – q-n)

Зная, что q = 1 + p или p = q -1, получаем следующие Формулы расчета ОАП

Формулы расчета ОАП

1(q – 1) + (q – 1)/(qn – 1]1ap + p/[(1 + p)n – 1]2(q – 1)/(1 – 1/qn)2ap/[1 – 1/(1 + p)n]3(q – 1)/(1 – q-n)3ap/[1 – (1 + p)-n]

ПРИМЕЧАНИЕ 1:

Результаты расчетов по любой из 6 формул будут одинаковыми- Эти формулы неприминимы для случая p = 0.

При p = 0 следует просто разделить сумму кредита наколичество платежей- Формулы 1 и 1а – самые простые и наглядные. Из формулы 1а очевидно, что при ПС = p > 0 ОАП всегда больше p.

Иначе заемщик никогда рассчитается по кредиту

– На интернет-сайтах чаще всего приводятся формулы вида 3а иее аналоги.

По сути все 6 формул, приведенные в таблице, – различные вариации одной и той же основной формулы.На практике различные кредитные организации применяют три различные, включая приведенную,основные формулы расчета АП. Подробнее об этом в теме: Три формулы расчета АП. Какая правильная? , где

ОАП и ААП – относительный и абсолютный АПСК – сумма кредитаp – ПС (в долях) за ПП (если p = 1,2%, то доля = 0,012)

n – количество АП или ПП

или приводимые на сайтах

Аап = ск*оап = ск*p/12/[1 – (1 + p/12)-n]

, где

ОАП и ААП – относительный и абсолютный АПСК – сумма кредитаp – ПС (в долях) за год (если p = 12%, то доля = 0,12)p/12 – ПС за месяц – ПП

n – количество АП или ПП

Сумма ОАП: Соап = n*ОАП

Примеры расчета АП

Расчет по формуле 1a

1. СК – 1 млн. руб; ПС – 15%/год = 1,25%/мес = 0,0125; срок – 30 лет – 360 АП или ПП

ОАП = a = p + p/[(1 + p)n – 1] = 0,0125 + 0,0125/[(1 + 0,0125)360 – 1]= 0,012644 = 1,264%/мес от СКААП = СК*ОАП = 1000000 * 0,012644 =12644 руб = 12,64 тр/мес

Соап = n*ОАП = 360*1,264% = 455% от СК

2. Тот же кредит в Постоянных Рублях (ПР)Рублевой ПС – 15%/год при Спорном Инфляционном Прогнозе – 12%/год соответствует ПС в ПР – 2,678%/год (1,15/1,12 = 1,02679; = 2,678%)

СК – 1 млн. ПР; ПС в ПР – 2,678%/год = 0,223%/мес = 0,00223; срок – 30 лет – 360 АП или ПП

ОАП = a = p + p/[(1 + p)n – 1] = 0,00223 + 0,00223/[(1 + 0,00223)360 – 1]= 0,004045 = 0,4045%/мес от СКААП = СК*ОАП = 1000000 * 0,004045 = 4045 ПР = 4,04 тПР/мес

Соап = n*ОАП = 360*0,4045% = 145,6% от СК

ПР – индекс цен, инфляционный показатель. Курс ПР измеряется в рублях и изменяется в соответствии с ростом цен. Если цены за некоторый период возрастают в 2 раза, то и курс ПРвозрастет в 2 раза. Оплата в рублях по курсу ПР на день выплаты.

Применение ПР позволит заемщикам взять в разы больший кредит (в приведенном примере в 3,125 раза больше), т.е. на многие годы раньше решить жилищную проблему. Заемщик начинает оплачивать свое, а не чужое нанимаемое дорожающее жилье. Платить придется по растущему курсу ПР, но игра стоит свеч. При досрочном погашении можно рассчитаться значительно быстрее чем за 30 лет.

ПР решает проблему Спорного Инфляционного Прогноза. Вкладчики получают возможность реальногосохранения и приумножения покупательной способности сбережений. Заемщики получают более доступные кредиты. Прибыли банков также возрастут, т.к. повысится доверие вкладчиков, существенно возрастутобъемы и количество размещенных вкладов и выданных кредитов.

Форумы по ипотеке, экономике, налогам (5 kb)

Гостевая

Задайте вопросы Президенту России

Источник: http://diletantr.narod.ru/anvf.html

Аннуитеты в МСФО

Вывод формулы аннуитета

В данной статье мы продолжим говорить о дисконтировании денежных потоков и в этот раз речь пойдет об аннуитетных денежных потоках.

Что такое аннуитет?

Аннуитет – это серия одинаковых платежей через одинаковые промежутки времени. Это могут быть ежегодные, ежеквартальные, ежемесячные платежи. Например, фиксированная сумма зарплата, арендных выплат, платежей банку по кредиту и т.д.

Аннуитеты бывают пренумерандо и постнумерандо. Данные термины обозначают момент платежа. Термин пренумерандоозначает платежи в начале каждого периода, постнумерандо — в конце временного периода.

Формула аннуитета

Аннуитетные денежные потоки также можно дисконтировать, то есть определять их текущую стоимость. Например, это необходимо, когда нам нужно выбрать между двумя предлагаемых нам вариантами получения денег.

Дисконтирование аннуитетных платежей

ПРИМЕР 1. Необходимо выбрать наиболее выгодный вариант:

А) получить 40,000 долларов сегодня или

(Б) 5 раз по 10,000 долларов в конце каждого из следующих 5 лет.

Банковская ставка для получения кредита на данный срок составляет 10%.

На первый взгляд вариант (Б) в сумме лучше (5 х 10,000 = 50,000), чем 40,000 долларов. Но действительно ли это так? Ведь мы знаем, что у денег есть еще и «временная» стоимость.

Чтобы сравнить эти два варианта между собой, надо привести их к одному моменту времени (к моменту «сейчас»), поскольку стоимость денег в разные моменты времени различна.

В данном случае надо продисконтировать аннутитетный денежный поток (Б), т.е. рассчитать его сегодняшнюю стоимость.

Для начала давайте вспомним, как выглядит формула дисконтирования:

PV = FV х 1/(1+R)n

где,

Future value (FV) – будущая стоимость Present value (PV) – текущая (дисконтированная/приведенная) стоимость. R – ставка процента (норма доходности, требуемая инвестором), N – число лет от даты в будущем до текущего момента

Коэффициенты дисконтирования, используемые для нашего примера 1/(1+R)n — это 0.9091, 0.8264 и т.д. Только эти вычисления придется повторить 5 раз и сложить. Если продисконтировать (то есть привести к текущему моменту) каждую сумму отдельно, то получится вот такая таблица:

10,000 х 0,9091 = 9,09110,000 х 0,8264 = 8,26410,000 х 0,7513 = 7,51310,000 х 0,6830 = 6,83010,000 х 0,6209 = 6,209

Итого: 37,907

Здесь сумма платежа умножена на соответствующий каждому году коэффициент дисконтирования. В итоге, пять платежей по 10,000 долларов в конце каждого года с учетом дисконтирования стоят 37,907 долларов, что немного меньше, чем 40,000 сегодня. Следовательно, при ставке 10%, 40,000 долларов сегодня будет выгоднее, чем предложенный аннуитет 5 лет по 10,000 долларов.

Формулу дисконтированной стоимости аннуитета можно записать следующим образом:

PV = PMT х [1/(1+R)1 + 1/(1+R)2 + 1/(1+R)3 + 1/(1+R)4 +1/(1+R)5] = 10,000 х (0.9091+0.8264+0.7513+0.6830+0.6209) = 10,000 х 3.7907 = 37,907

где PMT (от английского payment) – это сумма аннуитетного платежа.

Как Вы могли заметить, вместо того чтобы дисконтировать каждую сумму отдельно, можно сложить все коэффициенты дисконтирования и умножить только один раз. Результат сложения коэффициентов дисконтирования за 5 лет называется коэффициентом аннуитета. В данном примере коэффициент аннуитета равен 3,7907.

Таким образом, для нахождения текущей стоимости аннуитетов необходимо разовый платеж умножить на коэффициент аннуитета (10,000*3,7907 = 37,907).

Итак, мы разобрали пример с аннуитетными платежами в конце каждого года (постнумерандо) .

ПРИМЕР 2. Давайте немного изменим условия нашего примера. Необходимо выбрать наиболее выгодный вариант:

А) получить 40,000 долларов сегодня или

Б) 5 раз по 10,000 долларов в начале каждого из следующих 5 лет.

Это будет так называемый аннуитет пренумерандо.

В данной ситуации, так как первый платеж производится в начале года, то самый важный нюанс, о котором надо помнить, это то что, первый платеж не надо дисконтировать (т.е. приводить к настоящему моменту).

Другими словами, для первого платежа используется коэффициент дисконтирования равный единице. Но необходимо дисконтировать остальные 4 платежа, так как они отложены во времени.

Для иллюстрации составим следующую таблицу:

10,000 х 1.000 = 10,00010,000 х 0.9091 = 9,09110,000 х 0.8264 = 8,26410,000 х 0.7513 = 7,51310,000 х 0.6830 = 6,830

Итого: 41,698

Следовательно, предложенный аннуитет 5 лет по 10,000 в начале года будет выгоднее, чем 40,000 сегодня при ставке 10%.

Формула дисконтированной стоимости аннуитета:

PV = PMT + PMT х [1/(1+R)1 + 1/(1+R)2 + 1/(1+R)3 + 1/(1+R)4] = 10,000 + 10,000 х (0.9091+0.8264+0.7513+0.6830) = 10,000 + 10,000 х 3.1698 = 41,698

Обратите внимание, что в данном примере мы определили коэффициент аннуитета для четырех отложенных во времени платежей, а не для пяти, а первый платеж не дисконтировали.

Как видно из данных примеров, большое значение имеет момент, когда производятся платежи: в начале или в конце периода. Поэтому, если нужно рассчитать дисконтированную стоимость аннуитетных денежных потоков, желательно рисовать шкалу времени, на которой отметить суммы и коэффициенты, соответствующие каждому периоду.

Все блоги

Источник: https://www.hocktraining.com/blog/137

Формула и расчет аннуитетного платежа по кредиту

Вывод формулы аннуитета

Итак, друзья, вот мы и добрались до самого интересного – до формул и расчетов, связанных с аннуитетными платежами. Хотя врём, данная тема скучна и неинтересна. Кто не «дружит» с математикой может сейчас начать зевать, а на определённом этапе – впасть в ступор.

Тем не менее, команда портала temabiz.com решила рискнуть и написать простыми словами о формулах и расчетах аннуитетных платежей. Что из этого получилось, вы узнаете, прочитав эту публикацию.

Формула расчета аннуитетных платежей

Вы точно уверены, что хотите увидеть формулу аннуитетного платежа? Хорошо, вот она:

P – ежемесячный платёж по аннуитетному кредиту (тот самый аннуитетный платёж, который не изменяется в течение всего периода погашения кредита);
S – сумма кредита;
i – ежемесячная процентная ставка (рассчитывается по следующей формуле: годовая процентная ставка/100/12);
n – срок, на который берётся кредит (указывается количество месяцев).

На первый взгляд данная формула может показаться страшной и непонятной. С другой стороны, а надо ли её понимать? Вам же требуется всего лишь рассчитать сумму аннуитетного платежа, верно? А что для этого надо? Правильно, надо просто подставить в формулу свои значения и произвести расчеты. Давайте сейчас этим и займёмся!

Расчёт аннуитетного платежа по кредиту

Допустим, вы решили взять в кредит 50 000 рублей на 12 месяцев под 22% годовых. Естественно, тип погашения будет аннуитетный. Вам надо рассчитать сумму ежемесячных взносов по кредиту.

Давайте для начала красиво оформим наши исходные данные (они нам понадобятся не только в этом, но и в дальнейших расчетах):

Сумма кредита: 50 000 руб.
Годовая процентная ставка: 22%.
Срок кредитования: 12 месяцев.

Итак, прежде чем приступить к расчёту аннуитетного платежа, надо посчитать ежемесячную процентную ставку (в формуле она скрывается под символом i и рассчитывается так: годовая процентная ставка/100/12). В нашем случае получится следующее:

Теперь, когда мы нашли значение i, можно приступать к расчёту размера аннуитетного платежа по нашему кредиту:

Путём несложных математических вычислений выяснилось, что сумма ежемесячных отчислений по нашему кредиту будет равна 4680 рублей.

В принципе, на этом можно было бы закончить нашу статью, но вы же наверняка хотите знать больше. Правда? Вот скажите, вы хотите знать, какую долю в данных выплатах составляют проценты по кредиту, а какую – тело кредита? Да и вообще, сколько вы переплатите по кредиту? Если да, тогда мы продолжаем!

График погашения кредита аннуитетными платежами

Вначале мы продемонстрируем вам сам график аннуитетных платежей, проанализируем его вместе с вами, а уж затем детально расскажем о том, как и по каким формулам мы его рассчитали.

Вот так выглядит аннуитетный график погашения нашего кредита:

А это диаграмма (для наглядности):

И график, и диаграмма подтверждают написанное в публикации: Что такое аннуитетные платежи. Если вы по каким-то причинам её не читали, то обязательно это сделайте – не пожалеете.

А те, кто читал, могут убедиться, что в аннуитетном графике погашения кредита выплаты осуществляются равными суммами, на начальном этапе доля процентов по кредиту самая высокая, а ближе к окончанию срока она существенно снижается.

Обратите внимание на то, что тело кредита погашается с первого же месяца кредитования. Просто на некоторых сайтах можно прочитать что-то типа такого: «При аннуитетной схеме погашения займа, вначале выплачиваются проценты, а уже потом само тело кредита». Как видите, это утверждение не соответствует действительности. Правильнее будет сказать так:

Аннуитетные платежи содержат в себе на начальном этапе высокую долю процентов по кредиту.

Тело же кредита тоже погашается с первого месяца кредитования. Тем самым, уменьшается сумма долга и, соответственно, размер выплат процентов по кредиту.

Теперь давайте детальнее изучим наш график аннуитетных платежей. Как видите, ежемесячный платёж у нас составляет 4680 рублей.

Именно эту сумму мы будем каждый месяц выплачивать банку на протяжении всего срока кредитования (в нашем случае – на протяжении 12 месяцев). В результате, общая сумма выплат составит 56 157 рублей.

В кредит же мы брали 50 000 рублей (в графике это четвёртая колонка, которая называется «Погашение тела кредита»). Получается, что переплата по данному займу составит 6157 рублей.

Собственно, это и есть проценты по кредиту, которые указаны в третьей колонке нашего графика аннуитетных платежей. Получается, что эффективная процентная ставка (или полная стоимость кредита) у нас составит – 12,31%. Давайте «красиво» оформим данную информацию:

Ежемесячный аннуитетный платёж: 4680 руб.
Тело кредита: 50 000 руб.
Общая сумма выплат: 56 157 руб.
Переплата (проценты) по кредиту: 6157 руб.
Эффективная процентная ставка: 12,31%.

Итак, мы с вами проанализировали график аннуитетных платежей. Осталось понять, как вычисляется процентная доля и доля тела кредита в ежемесячных выплатах. Вот почему в первый месяц проценты составляют именно 917 рублей, во второй – 848 рублей, в третий – 777 рублей и т.д.? Хотите узнать? Тогда читайте дальше!

Расчёт процентов по аннуитетным платежам

Посчитать долю процентов в аннуитетных платежах вам поможет вот эта формула:

In – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту;
Sn – сумма оставшейся задолженности по кредиту (остаток по кредиту);
i – уже знакомая вам ежемесячная процентная ставка (в нашем случае она равна – 0.018333).

Давайте для наглядности рассчитаем долю процентов в первом платеже по нашему кредиту:

Так как это первый платёж, то суммой оставшейся задолженности по кредиту является весь кредит – 50 000 руб. Умножив эту сумму на ежемесячную процентную ставку – 0.018333, мы и получим 917 руб. – сумму, указанную в нашем графике.

При расчёте суммы процентов в следующем аннуитетном платеже, на месячную процентную ставку умножается долг, который сформировался на конец предыдущего месяца (в нашем случае это 46 237 руб.).

В результате получится 848 руб. – размер доли процентов во втором аннуитетном платеже. По такому же принципу рассчитываются проценты в остальных платежах.

Далее давайте вычислим составляющую в аннуитетных платежах, которая пойдёт на погашение тела кредита.

Расчёт доли тела кредита в аннуитетных платежах

Зная долю процентов в аннуитетном платеже, можно легко посчитать долю тела кредита. Формула расчёта проста и понятна:

S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита;
P – ежемесячный аннуитетный платёж;
In – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту.

Как видите, здесь нет ничего сложного. По сути, аннуитетный платёж содержит в себе две составляющие:

  1. 1. Долю процентов по кредиту.
  2. 2. Долю тела кредита.

Если нам известна величина самого аннуитетного платежа и размер процентной доли, то на погашение тела кредита в этом платеже пойдёт то, что останется после вычитания из него суммы процентов.

Расчёт доли тела кредита в нашем первом платеже выглядит так:

Надеемся, теперь всем понятно, откуда в графе «Погашение тела кредита» нашего графика аннуитетных платежей в выплатах за первый месяц взялась сумма 3763 руб. Да-да, это именно то, что осталось после того, как мы из суммы аннуитетного платежа (4680 руб.) вычли сумму процентов по кредиту (917 руб.). Аналогичным образом рассчитаны значения этой графы за последующие месяцы.

Итак, с телом кредита разобрались. Теперь осталось выяснить, как рассчитывается долг на конец месяца (в графике аннуитетных платежей это у нас последняя колонка).

Как рассчитать долг на конец месяца в графике аннуитетных платежей

Прежде всего, надо понимать, что именно является вашим долгом по кредиту, и какие выплаты способствуют его уменьшению. В нашем примере вы берёте в кредит 50 000 рублей – это и есть ваш долг. Переплаченные по кредиту проценты (6157 рублей) вашим долгом не являются, это всего лишь вознаграждение банку за предоставленный кредит. Таким образом, можно сделать вывод:

Погашение процентов по кредиту никак не способствует уменьшению вашего долга перед банком.

В кризисные времена банки часто «идут навстречу» своим должникам. Они говорят как-то так: «Мы понимаем, у вас сейчас проблемы! Окей, наш банк готов пойти вам на уступки – можете нам просто погашать проценты, а само тело кредита погашать не надо. Все же люди братья и должны друг другу помогать! Бла-бла-бла…»

На первый взгляд такое предложение может показаться выгодным, а сам банк – «белым и пушистым лапулей». Ага, как бы ни так! Если взять в руки калькулятор и провести простые арифметические расчёты, то сразу становится ясно, что реальное предложение банка выглядит приблизительно так:

«Ребята, вы попали на деньги! Ничего не поделаешь, это жизнь! Предлагаем вам на время (а может и навсегда) стать нашим рабом – будете ежемесячно выплачивать проценты по кредиту, а сам долг погашать не надо (ну, чтобы сумма выплат по процентам не уменьшалась). Ничего личного – это просто бизнес, друзья!»

Теперь запомните главную мысль:

Именно погашение тела кредита вытаскивает вас из долговой ямы. Не процентов, а именно тела кредита.

Наверняка вы уже догадались, как рассчитывается долг на конец месяца в нашем графике платежей. В общем, формула выглядит так:

Sn2 – долг на конец месяца по аннуитетному кредиту;
Sn1 – сумма текущей задолженности по кредиту;
S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита.

Обратите внимание! При расчёте долга на конец месяца, от общей суммы текущей задолженности отнимается только та часть платежа, которая идёт на погашение тела кредита (уплаченные проценты сюда не входят).

Давайте для наглядности посчитаем, каким будет долг на конец месяца по нашему кредиту после внесения первого платежа:

Итак, при первом платеже текущая задолженность по кредиту у нас равна всей сумме займа (50 000 руб.). Чтобы посчитать долг на конец месяца, мы отнимаем от этой суммы не весь ежемесячный платёж (4680 руб.

), а только ту часть, которая ушла на погашение тела кредита (3763 руб.). В результате наш долг на конец месяца составит 46 237 руб., именно на эту сумму будут начисляться проценты в следующем месяце. Естественно, они будут меньше, так как сумма долга уменьшилась.

Теперь вы понимаете, почему важно погашать именно тело кредита?

Итак, друзья, мы с вами разобрались с формулами и расчетами аннуитетных платежей.

Надеемся, теперь у вас нет вопросов по этой теме, и вы запросто сможете произвести все необходимые расчеты, а также составить график аннуитетных платежей по кредиту.

Единственное, что бы вам, наверное, хотелось, это как-то автоматизировать процесс расчетов. Вы не поверите, но это возможно! Хотите узнать как? Тогда переходим к публикации: Расчет аннуитетных платежей по кредиту в Excel.

Источник: http://www.temabiz.com/finterminy/ap-formula-i-raschet-annuitetnogo-platezha.html

Аннуитет. Определяем в MS EXCEL Будущую Стоимость

Вывод формулы аннуитета

Определим Будущую стоимость инвестиции в случае аннуитета. Под инвестицией будем понимать как регулярные взносы, так и начальный взнос. Для этого будем использовать функцию БС(). Также выведем альтернативную формулу для расчета Будущей стоимости.

Будущая стоимость (Future Value), является суммой, в которую в будущем превратится определенная сумма денег, инвестированная ранее под известную процентную ставку.
Она рассчитывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.

Расчет Будущей стоимости, также как и Текущей стоимости важен, так как, платежи, осуществленные в различные моменты времени, можно сопоставлять (сравнивать, складывать, вычитать) лишь после приведения их к одному временному моменту.
Будущая стоимость инвестиций зависит от того, каким методом начисляются проценты: простые проценты, сложные проценты или аннуитет.

В MS EXCEL Будущая стоимость для аннуитета и для сложных процентов рассчитывается функцией БС().

Примечание: в случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов (не аннуитет) используется функция БЗРАСПИС().

Использование функции БС() в случае накопления вклада

Функция БС(ставка; кпер; плт; [пс]; [тип]) возвращает будущую стоимость инвестиции на основе периодических постоянных (равных по величине сумм) платежей и постоянной процентной ставки. Например, если у Вас сейчас на банковском счете сумма ПС и вы ежемесячно дополнительно вносите одну и туже сумму ПЛТ, то функция вычислит сумму на Вашем банковском счете через Кпер месяцев.

Теперь несколько замечаний:

  1. Предполагается, что капитализация процентов происходит также периодически с процентной ставкой равной величине СТАВКА;
  2. Процентная ставка указывается за период (если период равен месяцу, а задана годовая ставка =10%, то СТАВКА =10%/12);
  3. По умолчанию аргумент Тип=0, т.е. пополняющие счет вклады делаются в конце каждого периода. Если Тип=1, то пополняющие счет вклады делаются в начале каждого периода;
  4. Начальная сумма вклада ПС м.б. =0, но тогда суммы дополнительных взносов ПЛТ не должны быть  =0;
  5. Суммы дополнительных взносов м.б. =0, но тогда Начальная сумма вклада ПС не должна быть =0.

Примечание. Английский вариант функции: FV(rate, nper, pmt, [pv], [type]), т.е. Future Value – Будущая Стоимость.

Расчеты в БС() производятся по этой формуле:

Из формулы видно, будущая стоимость состоит из 2-х составляющих: будущая стоимость инвестиции ПС (вычисляется по формуле сложных процентов) и будущая стоимость периодических равновеликих взносов ПЛТ (вычисляется по формуле аннуитета).

Примечание. При БС=0 (начальная инвестиция =0) Будущая стоимость не зависит от параметра Тип.

Вычислим Будущую стоимость в случае накопления вклада. Исходные данные приведены на рисунке ниже.

В результате расчетов получим следующий график накопления вклада (см. файл примера Лист Накопление).

Примечание. Функцию БС() можно также использовать для вычисления баланса на конец периода (см. файл примера Лист Накопление, столбец G). Для этого используйте выражение = БС(ставка; кпер; плт; [пс]; [тип])/ (1+ставка*тип)

Примечание. При Тип=1 (начисление процентов в начале периода), баланс на конец последнего периода не равен БС (как при Тип=0), т.к. учитывается начисление процентов на следующий день после окончания последнего периода! Т.е. к балансу на конец последнего периода прибавляется величина =БС(ставка; кпер; плт; [пс]; [тип])*ставка

Вывод формулы Будущей стоимости

Формула аннуитета может быть получена как сумма членов геометрической прогрессии, где знаменатель =(1+ставка). Выведем формулу аннуитета при Тип=0 в случае накопления вклада в течение Кпер периодов. Накопление вклада производится регулярными взносами (платежами) ПЛТ, начальная сумма вклада =0 (ПС). За период действует процентная ставка =Ставка.
Итак, выводим:

  1. Т.к. платеж вносится в конце периода, то в 1-й период проценты не начисляются (банк не использовал взнос). Баланс на конец периода =ПЛТ (взнос также сделан в конце периода).
  2. В конце 2-го периода проценты начисляются на величину ПЛТ (на взнос, который был сделан в 1-м периоде). Баланс на конец 2-го периода =ПЛТ+ ПЛТ*ставка+ПЛТ= ПЛТ+ПЛТ*(1+ставка).
  3. В конце 3-го периода проценты начисляются на величину ПЛТ+ ПЛТ *(1+ставка), т.е. на баланс начала 3-го периода (или на баланс конца 2-го периода, что естественно, то же самое). Баланс на конец 3-го периода = (ПЛТ+ ПЛТ *(1+ставка))*ставка+ (ПЛТ+ ПЛТ *(1+ставка))+ПЛТ=(ПЛТ+ ПЛТ *(1+ставка))*( 1+ставка) + ПЛТ= ПЛТ *(1+ставка)2+ ПЛТ *(1+ставка)+ПЛТ.
  4. Очевидно, что баланс в конце последнего периода (кпер)= ПЛТ *(1+ставка)(кпер-1)+ ПЛТ *(1+ставка) (кпер -2)+… +ПЛТ *(1+ставка)2+ ПЛТ *(1+ставка)+ПЛТ. Заметим, что ПЛТ = ПЛТ *(1+ставка)0
  5. Формула, полученная на предыдущем шаге, является суммой членов геометрической прогрессии и одновременно =БС: первый член геометрической прогрессии =ПЛТ, знаменатель =(1+ставка). Т.е. БС=ПЛТ*(1-(1+ставка) кпер)/(1-(1+ставка))= ПЛТ*(((1+ставка) кпер)-1)/ставка. Полученное уравнение с точностью до знака совпадает со вторым слагаемым формулы для вычисления БС (при Тип=0).

Как показано в файле примера (лист Накопление) при задании аргументов функции БС() у ПЛТ указывают знак минус (в этом случае БС>0).

Противоположные знаки у ПЛТ и БС указывают на то, что мы имеем дело с разнонаправленными денежными потоками: БС – это деньги, которые банквернетнам после окончания вклада, а -ПЛТ – это деньги, которые мырегулярно отдаем банку.
Поэтому, окончательная формула для БС() (при ПС=0 и Тип=0): =- ПЛТ*(((1+ставка) кпер)-1)/ставка

Использование функции БС() в случае возврата кредита

Функция БС() может быть использована также для нахождения остаточной стоимости ссуды по прошествии заданного количества периодов (см.файл примера Лист Выплата кредита). Для этого используйте формулу =-БС(ставка; кпер; плт; [пс]; [тип])/ (1+ставка*тип)

При выплате кредита обычно предполагается, что по прошествии Кпер периодов (т.е. по истечению срока займа) Будущая стоимость кредита станет равна 0 (т.е. кредит будет полностью возращен).

Примечание: в файле примера приведено решение нескольких простых задач по определению Будущей стоимости.

Источник: https://excel2.ru/articles/annuitet-opredelyaem-v-ms-excel-budushchuyu-stoimost

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.